Molecular physiology of the neural circuit for calcineurin-dependent associative learning in Caenorhabditis elegans.
نویسندگان
چکیده
How learning and memory is controlled at the neural circuit level is a fundamental question in neuroscience. However, molecular and cellular dissection of the neural circuits underlying learning and memory is extremely complicated in higher animals. Here, we report a simple neural circuit for learning behavior in Caenorhabditis elegans, where the calcium-activated phosphatase, calcineurin, acts as an essential modulator. The calcineurin mutant tax-6 showed defective feeding state-dependent learning behavior for temperature and salt. Surprisingly, defective associative learning between temperature and feeding state was caused by malfunctions of two pairs of directly connected interneurons, AIZ and RIA, in the mature nervous system. Monitoring temperature-evoked Ca2+ concentration changes in the AIZ-RIA neural pathway revealed that starvation, a conditioning factor, downregulated AIZ activity through calcineurin during associative learning between temperature and feeding state. Our results demonstrate the molecular and physiological mechanisms of a simple neural circuit for calcineurin-mediated associative learning behavior.
منابع مشابه
An elegant mind: learning and memory in Caenorhabditis elegans.
This article reviews the literature on learning and memory in the soil-dwelling nematode Caenorhabditis elegans. Paradigms include nonassociative learning, associative learning, and imprinting, as worms have been shown to habituate to mechanical and chemical stimuli, as well as learn the smells, tastes, temperatures, and oxygen levels that predict aversive chemicals or the presence or absence o...
متن کاملParallel encoding of sensory history and behavioral preference during Caenorhabditis elegans olfactory learning
Sensory experience modifies behavior through both associative and non-associative learning. In Caenorhabditis elegans, pairing odor with food deprivation results in aversive olfactory learning, and pairing odor with food results in appetitive learning. Aversive learning requires nuclear translocation of the cGMP-dependent protein kinase EGL-4 in AWC olfactory neurons and an insulin signal from ...
متن کاملJapanese studies on neural circuits and behavior of Caenorhabditis elegans
The nematode Caenorhabditis elegans is an ideal organism for studying neural plasticity and animal behaviors. A total of 302 neurons of a C. elegans hermaphrodite have been classified into 118 neuronal groups. This simple neural circuit provides a solid basis for understanding the mechanisms of the brains of higher animals, including humans. Recent studies that employ modern imaging and manipul...
متن کاملCalcineurin, a calcium/calmodulin-dependent protein phosphatase, is involved in movement, fertility, egg laying, and growth in Caenorhabditis elegans.
Calcineurin is a Ca(2+)-calmodulin-dependent serine/threonine protein phosphatase that has been implicated in various signaling pathways. Here we report the identification and characterization of calcineurin genes in Caenorhabditis elegans (cna-1 and cnb-1), which share high homology with Drosophila and mammalian calcineurin genes. C. elegans calcineurin binds calcium and functions as a heterod...
متن کاملC. elegans positive olfactory associative memory is a molecularly conserved behavioral paradigm
While it is thought that short-term memory arises from changes in protein dynamics that increase the strength of synaptic signaling, many of the underlying fundamental molecular mechanisms remain unknown.Our lab developed a Caenorhabditis elegans assay of positive olfactory short-term associative memory (STAM), in which worms learn to associate food with an odor and can remember this associatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 37 شماره
صفحات -
تاریخ انتشار 2006